Diagonals of Self-adjoint Operators with Finite Spectrum

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonals of Self-adjoint Operators with Finite Spectrum

Given a finite set X ⊆ R we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the SchurHorn theorem from a finite dimensional setting to an infinite dimensional Hilbert space analogous to Kadison’s theorem for orthogonal projections [8, 9] and the second author’s result for operators with three point spectrum [7].

متن کامل

Diagonals of Self-adjoint Operators

The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...

متن کامل

Diagonals of normal operators with finite spectrum.

Let X={lambda1, ..., lambdaN} be a finite set of complex numbers, and let A be a normal operator with spectrum X that acts on a separable Hilbert space H. Relative to a fixed orthonormal basis e1, e2, ... for H, A gives rise to a matrix whose diagonal is a sequence d=(d1, d2, ...) with the property that each of its terms dn belongs to the convex hull of X. Not all sequences with that property c...

متن کامل

Computability of the Spectrum of Self-Adjoint Operators

Self-adjoint operators and their spectra play a crucial rôle in analysis and physics. For instance, in quantum physics self-adjoint operators are used to describe measurements and the spectrum represents the set of possible measurement results. Therefore, it is a natural question whether the spectrum of a self-adjoint operator can be computed from a description of the operator. We prove that gi...

متن کامل

h . O A ] 2 4 A ug 2 00 5 DIAGONALS OF SELF - ADJOINT OPERATORS

The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We give a new proof of the latter result for positive trace-class operators on in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Polish Acad. Sci. Math.

سال: 2015

ISSN: 0239-7269,1732-8985

DOI: 10.4064/ba8024-12-2015